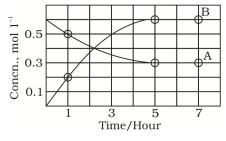


Date Planned ://	Daily Tutorial Sheet-2	Expected Duration : 90 Min	
Actual Date of Attempt ://	JEE Advanced (Archive)	Exact Duration :	


- A first order reaction, $A \to B$, requires activation energy of $70kJ\,\text{mol}^{-1}$. When a 20% solution of A was kept at 25°C for 20 min, 25% decomposition took place. What will be percentage decomposition in the same time in a 30% solution maintained at 40°C? Assume that activation energy remains constant in this range of temperature. (1993)
- $\textbf{17.} \hspace{0.5in} \textbf{The gas phase decomposition of dimethyl ether follows first order kinetics:} \\$

(1993)

$$CH_3 - O - CH_3(g) \longrightarrow CH_4(g) + H_2(g) + CO(g)$$

The reaction is carried out in a constant volume container at 500°C and has a half-life of 14.5 min. Initially only dimethyl ether is present at a pressure of 0.40 atm. What is the total pressure of the system after 12 min? Assume ideal gas behaviour.

18. The progress of the reaction, $A \rightleftharpoons nB$, with time, is presented in figure given below. Determine. (1994)

 \odot

- (i) The value of n,
- (ii) The equilibrium constant K, and
- (iii) the initial rate of conversion of A.
- **19.** For the reaction : $N_2(g) + 3H_2(g) \longrightarrow 2NH_3(g)$

(1994)

Under certain conditions of temperature and partial pressure of the reactants, the rate of formation of NH_3 is 0.001 kg/h^{-1} . The rate of conversion of H_2 under the same condition is _____kg/h^{-1}.

20. From the following data for the reaction between A and B

(1994)

[A], (mol/L)	[B], (mol/L)	Initial rate (mol L ⁻¹ s ⁻¹) at	
		300 K	320 K
2.5×10^{-4}	3.0×10^{-5}	5.0×10^{-4}	2.0×10^{-3}
5.0×10^{-4}	6.0×10^{-5}	4.0 ×10 ⁻³	
1.0×10^{-3}	6.0×10^{-5}	1.6×10^{-2}	

Calculate:

- (i) the order of the reaction with respect to A and with respect to B
- (ii) the rate constant at 300 K
- (iii) the pre-exponential factor.
- 21. At 380° C, the half-life period for the first order decomposition of H₂O₂ is 360 min. The energy of activation of the reaction is 200 kJ mol⁻¹. Calculate the time required for 75% decomposition at 450°C. (1995)

22.	In Arrhenius equation, $k = A ex$	$(-E_a/RT)$. A may be termed as the rate constant at	(1997
22 .	In Arrhenius equation, $k = A ex$	o` a' ''''. A may be termed as the rate constant at	·

23. The rate constant for the first order decomposition of a certain reaction is described by the equation

$$\log k(s^{-1}) = 14.34 - \frac{1.25 \times 10^4 K}{T}$$
 (1997)

- (i) What is the energy of activation for the reaction?
- (ii) At what temperature will its half-life period be 256 min?
- 24. (i) The rate constant of a reaction is $1.5 \times 10^7 s^{-1}$ at 50° C and $4.5 \times 10^7 s^{-1}$ at 100° C. Evaluate the Arrhenius parameters A and E_a . (1998)
 - (ii) For the reaction, $N_2O_5(g) \longrightarrow 2NO_2(g) + \frac{1}{2}O_2(g)$

Calculate the mole fraction $N_2O_5(g)$ decomposed at a constant volume and temperature, if the initial pressure is 600 mm Hg and the pressure at any time is 960 mm Hg. Assume ideal gas behaviour.

- *25. For the first order reaction, (1998)
 - (A) the degree of dissociation is equal to $(1 e^{-kt})$
 - **(B)** a plot of reciprocal concentration of the reactant vs time gives a straight line
 - (C) the time taken for the completion of 75% reaction is thrice the $\frac{1}{2}$ of the reaction
 - (D) the pre-exponential factor in the Arrhenius equation has dimension of time, T^{-1}
- ***26.** The following statement(s) is (are) correct:

(1999)

- (A) A plot of log k_p versus 1/T is linear
- **(B)** A plot of log [X] versus time is linear for a first-order reaction, $X \to P$
- **(C)** A plot of P versus 1/T is linear at constant volume
- **(D)** A plot of P versus 1/V is linear at constant

- 27. The rate constant for an isomerisation reaction, $A \longrightarrow B$ is $3.42 \times 10^{-3} M/min$. If the initial concentration of A is 1 M, calculate the rate of the reaction after 1 h. (1999)
- 28. A hydrogenation reaction is carried out at 500 K. If the same reaction is carried out in the presence of a catalyst at the same rate, the temperature required is 400 K. Calculate the activation energy of the reaction if the catalyst lowers the activation barrier by 20 kJ mol⁻¹. (2000)
- 29. The rate constant for the reaction, $2N_2O_5 \longrightarrow 4NO_2 + O_2$ is $1.3 \times 10^{-5} s^{-1}$. If the rate is 3.90×10^{-5} mol $L^{-1}s^{-1}$, then the concentration of N_2O_5 (in mol L^{-1}) is: (2000)
 - (A) 1.4 (B) 1.2 (C) 0.04 (D) 3
- 30. If 'I' is the intensity of absorbed light and 'C' is the concentration of AB for the photochemical process, $AB + hv \rightarrow AB$, the rate of formation of AB is directly proportional to: (2001)
 - (A) C (B) I (C) I^2 (D) C.I